Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113932, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457336

RESUMO

Innate immune cells can undergo long-term functional reprogramming after certain infections, a process called trained immunity (TI). Here, we focus on antigens of Leishmania braziliensis, which induced anti-tumor effects via trained immunity in human monocytes. We reveal that monocytes exposed to promastigote antigens of L. braziliensis develop an enhanced response to subsequent exposure to Toll-like receptor (TLR)2 or TLR4 ligands. Mechanistically, the induction of TI in monocytes by L. braziliensis is mediated by multiple pattern recognition receptors, changes in metabolism, and increased deposition of H3K4me3 at the promoter regions of immune genes. The administration of L. braziliensis exerts potent anti-tumor capabilities by delaying tumor growth and prolonging survival of mice with non-Hodgkin lymphoma. Our work reveals mechanisms of TI induced by L. braziliensis in vitro and identifies its potential for cancer immunotherapy.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Neoplasias , Humanos , Camundongos , Animais , Monócitos
2.
Carbohydr Res ; 537: 109059, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408423

RESUMO

Candida auris is an emerging fungal pathogen that has become a world-wide public health threat. While there have been numerous studies into the nature, composition and structure of the cell wall of Candida albicans and other Candida species, much less is known about the C. auris cell wall. We have shown that C. auris cell wall mannan contains a unique phosphomannan structure which distinguishes C. auris mannan from the mannans found in other fungal species. Specifically, C. auris exhibits two unique acid-labile mannose α-1-phosphate (Manα1PO4) sidechains that are absent in other fungal mannans and fungal pathogens. This unique mannan structural feature presents an opportunity for the development of vaccines, therapeutics, diagnostic tools and/or research reagents that target C. auris. Herein, we describe the successful synthesis and structural characterization of a Manα1PO4-containing disaccharide moiety that mimics the phosphomannan found in C. auris. Additionally, we present evidence that the synthetic Manα1PO4 glycomimetic is specifically recognized and bound by cell surface pattern recognition receptors, i.e. rhDectin-2, rhMannose receptor and rhMincle, that are known to play important roles in the innate immune response to C. auris as well as other fungal pathogens. The synthesis of the Manα1PO4 glycomimetic may represent an important starting point in the development of vaccines, therapeutics, diagnostics and research reagents which target a number of C. auris clinical strains. In addition, these data provide new insights and understanding into the structural biology of this unique fungal pathogen.


Assuntos
Mananas , Vacinas , Mananas/química , Candida auris , Manose , Candida albicans , Receptores de Superfície Celular , Parede Celular/química , Fosfatos
3.
Sci Rep ; 14(1): 1454, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228717

RESUMO

Cells of the innate immune system retain memory of prior exposures through a process known as innate immune training. ß-glucan, a Dectin-1 ligand purified from the Candida albicans cell wall, has been one of the most widely utilized ligands for inducing innate immune training. However, many Dectin-1 ligands exist, and it is not known whether these all produce the same phenotype. Using a well-established in vitro model of innate immune training, we compared two commercially available Dectin-1 agonists, zymosan and depleted zymosan, with the gold standard ß-glucan in the literature. We found that depleted zymosan, a ß-glucan purified from Saccharomyces cerevisiae cell wall through alkali treatment, produced near identical effects as C. albicans ß-glucan. However, untreated zymosan produced a distinct training effect from ß-glucans at both the transcript and cytokine level. Training with zymosan diminished, rather than potentiated, induction of cytokines such as TNF and IL-6. Zymosan activated NFκB and AP-1 transcription factors more strongly than ß-glucans. The addition of the toll-like receptor (TLR) ligand Pam3CSK4 was sufficient to convert the training effect of ß-glucans to a phenotype resembling zymosan. We conclude that differential activation of TLR signaling pathways determines the phenotype of innate immune training induced by Dectin-1 ligands.


Assuntos
Monócitos , beta-Glucanas , Humanos , Zimosan/farmacologia , Monócitos/metabolismo , Ligantes , Lectinas Tipo C/metabolismo , beta-Glucanas/metabolismo , Citocinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fenótipo
4.
Anaerobe ; 77: 102635, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36064161

RESUMO

OBJECTIVES: Clostridioides difficile (formerly Clostridium difficile) is associated with colitis in foals and mature horses. C. difficile exposes specific phosphorylated polysaccharides (PSs), named PS-I, PS-II and PS-III. These cell-surface PSs are potential vaccine targets, especially the hexasaccharide phosphate PS-II, that has been found in all C. difficile ribotypes examined. Since we previously identified anti-PS-II circulating antibodies in horses, we postulated that vaccinating foals with PS-II may prevent colonization by C. difficile. In this study, we aim to evaluate the IgM antibody responses in foals to PS-II. METHODS: To evaluate the reactogenicity and immunogenicity of C. difficile PS-II in foals, three-to four-month-old foals were vaccinated intramuscularly three times at intervals of three weeks with 100 µg/dose (3 foals) or 500 µg/dose (3 foals) of purified PS-II antigen with aluminum hydroxide adjuvant, or with a placebo preparation (2 foals) containing adjuvant alone. RESULTS: No injection site swelling, pain or fever was observed after vaccination. Two of the three foals receiving 100 µg/dose, and three out of three foals receiving 500 µg/dose of PS-II responded with increases in serum IgM antibodies. No control foals that received the placebo had IgM responses to PS-II. There was a trend towards a higher response rate in foals receiving 500 µg PS-II one week after second vaccination when compared to control foals and towards higher concentrations of serum IgM antibodies in foals receiving 500 µg PS-II. CONCLUSIONS: No adverse reactions were observed following vaccination with PS-II in foals; Serum IgM immune responses were induced by vaccination. A polysaccharide-based vaccine for C. difficile in horses deserves further investigation.


Assuntos
Clostridioides difficile , Vacinas , Animais , Formação de Anticorpos , Clostridioides , Cavalos , Imunoglobulina M , Vacinação/veterinária
5.
Methods Mol Biol ; 2542: 323-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008676

RESUMO

The cell wall contains mannans and glucans that are recognized by the host immune system. In this chapter, we will describe the methods to isolate mannans and glucans from the C. albicans cell wall. In addition, we describe how to determine purity, molecular size, and structure of the mannans and glucans. We also detail how to prepare the carbohydrates for in vitro, ex vivo, or in vivo use by describing endotoxin removal (depyrogenation), derivatization, and labeling and evaluation of bioactivity.


Assuntos
Glucanos , Mananas , Candida albicans , Parede Celular/química , Glucanos/análise
6.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35148840

RESUMO

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos Virais/imunologia , Candida albicans/química , Mananas/imunologia , Hidróxido de Alumínio/química , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Chlorocebus aethiops , Epitopos/imunologia , Imunidade Inata , Imunização , Inflamação/patologia , Interferons/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Linfonodos/imunologia , Linfonodos/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Seios Paranasais/metabolismo , Subunidades Proteicas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Solubilidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia , Fator de Transcrição RelB/metabolismo , Células Vero , beta-Glucanas/metabolismo
7.
NPJ Biofilms Microbiomes ; 7(1): 87, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880222

RESUMO

Bacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9-80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection.


Assuntos
Receptor de Manose , Pseudomonas aeruginosa , Biofilmes , Carboidratos , Células Dendríticas , Matriz Extracelular de Substâncias Poliméricas , Humanos , Lectinas Tipo C
8.
Cell Surf ; 7: 100061, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34765834

RESUMO

The fungal cell wall serves as the interface between the organism and its environment. Complex carbohydrates are a major component of the Candida albicans cell wall, i.e., glucan, mannan and chitin. ß-Glucan is a pathogen associated molecular pattern (PAMP) composed of ß-(1 â†’ 3,1 â†’ 6)-linked glucopyranosyl repeat units. This PAMP plays a key role in fungal structural integrity and immune recognition. Glycogen is an α-(1 â†’ 4,1 â†’ 6)-linked glucan that is an intracellular energy storage carbohydrate. We observed that glycogen was co-extracted during the isolation of ß-glucan from C. albicans SC5314. We hypothesized that glucan and glycogen may form a macromolecular species that links intracellular glycogen with cell wall ß-(1 â†’ 3,1 â†’ 6)-glucan. To test this hypothesis, we examined glucan-glycogen extracts by multi-dimensional NMR to ascertain if glycogen and ß-glucan were interconnected. 1H NMR analyses confirmed the presence of glycogen and ß-glucan in the macromolecule. Diffusion Ordered SpectroscopY (DOSY) confirmed that the ß-glucan and glycogen co-diffuse, which indicates a linkage between the two polymers. We determined that the linkage is not via peptides and/or small proteins. Our data indicate that glycogen is covalently linked to ß-(1 â†’ 3,1 â†’ 6) glucan via the ß -(1 â†’ 6)-linked side chain. We also found that the glucan-glycogen complex was present in C. dublinensis, C. haemulonii and C. auris, but was not present in C. glabrata or C. albicans hyphal glucan. These data demonstrate that glucan and glycogen form a novel macromolecular complex in the cell wall of C. albicans and other Candida species. This new and unique structure expands our understanding of the cell wall in Candida species.

9.
mSphere ; 6(3): e0040621, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34160238

RESUMO

Candida auris, a recently emergent fungal pathogen, has caused invasive infections in health care settings worldwide. Mortality rates approach 60% and hospital spread poses a public health threat. Compared to other Candida spp., C. auris avoids triggering the antifungal activity of neutrophils, innate immune cells that are critical for responding to many invasive fungal infections, including candidiasis. However, the mechanism underpinning this immune evasion has been largely unknown. Here, we show that C. auris cell wall mannosylation contributes to the evasion of neutrophils ex vivo and in a zebrafish infection model. Genetic disruption of mannosylation pathways (PMR1 and VAN1) diminishes the outer cell wall mannan, unmasks immunostimulatory components, and promotes neutrophil engagement, phagocytosis, and killing. Upon examination of these pathways in other Candida spp. (Candida albicans and Candida glabrata), we did not find an impact on neutrophil interactions. These studies show how C. auris mannosylation contributes to neutrophil evasion though pathways distinct from other common Candida spp. The findings shed light on innate immune evasion for this emerging pathogen. IMPORTANCE The emerging fungal pathogen Candida auris presents a global public health threat. Therapeutic options are often limited for this frequently drug-resistant pathogen, and mortality rates for invasive disease are high. Previous study has demonstrated that neutrophils, leukocytes critical for the antifungal host defense, do not efficiently recognize and kill C. auris. Here, we show how the outer cell wall of C. auris promotes immune evasion. Disruption of this mannan polysaccharide layer renders C. auris susceptible to neutrophil killing ex vivo and in a zebrafish model of invasive candidiasis. The role of these mannosylation pathways for neutrophil evasion appears divergent from other common Candida species.


Assuntos
Candida albicans/imunologia , Candida auris/imunologia , Candida auris/metabolismo , Candida glabrata/imunologia , Parede Celular/metabolismo , Evasão da Resposta Imune , Mananas/metabolismo , Neutrófilos/imunologia , Animais , Candida auris/genética , Candida auris/patogenicidade , Neutrófilos/microbiologia , Fagocitose , Virulência , Peixe-Zebra/microbiologia
10.
PLoS One ; 16(2): e0247305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621246

RESUMO

The Campylobacter jejuni capsule type HS1 complex is one of the most common serotypes identified worldwide, and consists of strains typing as HS1, HS1/44, HS44 and HS1/8. The capsule structure of the HS1 type strain was shown previously to be composed of teichoic-acid like glycerol-galactosyl phosphate repeats [4-)-α-D-Galp-(1-2)-Gro-(1-P-] with non-stoichiometric fructose branches at the C2 and C3 of Gal and non-stoichiometric methyl phosphoramidate (MeOPN) modifications on the C3 of the fructose. Here, we demonstrate that the capsule of an HS1/44 strain is identical to that of the type strain of HS1, and the capsule of HS1/8 is also identical to HS1, except for an additional site of MeOPN modification at C6 of Gal. The DNA sequence of the capsule locus of an HS44 strain included an insertion of 10 genes, and the strain expressed two capsules, one identical to the HS1 type strain, but with no fructose branches, and another composed of heptoses and MeOPN. We also characterize a HS1 capsule biosynthesis gene, HS1.08, as a fructose transferase responsible for the attachment of the ß-D-fructofuranoses residues at C2 and C3 of the Gal unit. In summary, the common component of all members of the HS1 complex is the teichoic-acid like backbone that is likely responsible for the observed sero-cross reactivity.


Assuntos
Campylobacter jejuni/crescimento & desenvolvimento , Polissacarídeos Bacterianos/genética , Análise de Sequência de DNA/métodos , Cápsulas Bacterianas/genética , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Sequência de Carboidratos , Família Multigênica , Mutação , Sorogrupo
11.
Nat Microbiol ; 5(12): 1516-1531, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839538

RESUMO

Candida auris is among the most important emerging fungal pathogens, yet mechanistic insights into its immune recognition and control are lacking. Here, we integrate transcriptional and functional immune-cell profiling to uncover innate defence mechanisms against C. auris. C. auris induces a specific transcriptome in human mononuclear cells, a stronger cytokine response compared with Candida albicans, but a lower macrophage lysis capacity. C. auris-induced innate immune activation is mediated through the recognition of C-type lectin receptors, mainly elicited by structurally unique C. auris mannoproteins. In in vivo experimental models of disseminated candidiasis, C. auris was less virulent than C. albicans. Collectively, these results demonstrate that C. auris is a strong inducer of innate host defence, and identify possible targets for adjuvant immunotherapy.


Assuntos
Candida/fisiologia , Candidíase/genética , Candidíase/microbiologia , Animais , Candida/genética , Candida/patogenicidade , Candidíase/imunologia , Citocinas/genética , Citocinas/imunologia , Humanos , Imunidade , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica , Virulência
12.
Biomacromolecules ; 21(8): 3112-3121, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603103

RESUMO

Invasive aspergillosis is a serious threat to immunodeficient and critically ill patients caused mainly by the fungus Aspergillus fumigatus. Here, poly(glycidol)-based nanogels (NGs) are proposed as delivery vehicles for antifungal agents for sustained drug release. NGs are formed by simple self-assembly of random copolymers, followed by oxidative cross-linking of thiol functionalities. We investigate the impact of copolymer amphiphilicity on NG interaction with mature fungal hyphae in order to select the optimal drug delivery system for model antifungal drug amphotericin B. The results show that drug-loaded NGs decrease minimal inhibitory concentration (MIC) for around four times and slow down the fungal biofilm synthesis at concentrations lower than MIC. Our results suggest that amphiphilicity of nanoparticle's polymer matrix is an important factor in understanding the action of nanocarriers toward fungal cells and should be considered in the development of nanoparticle-based antifungal therapy.


Assuntos
Aspergillus fumigatus , Preparações Farmacêuticas , Antifúngicos/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Nanogéis , Polímeros
13.
Sensors (Basel) ; 19(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717181

RESUMO

IoT devices are now enriching people's life. However, the security of IoT devices seldom attracts manufacturers' attention. There are already some solutions to the problem of connecting a smart device to a user's wireless network based on the 802.11 transmission such as Smart Config from TI. However, it is insecure in many situations, and it does not have a satisfactory transmission speed, which does not mean that it has a low bit rate. It usually takes a long time for the device to recognize the data it receives and decode them. In this paper, we propose a new Wi-Fi connection method based on audio waves. This method is based on MFSK (Multiple frequency-shift keying) and works well in short distance, which enables the correctness and efficiency. In addition, audio waves can hardly be eavesdropped, which provides higher security than other methods. We also put forward an encryption solution by using jamming signal, which can greatly improve the security of the transmission.

14.
Vaccine ; 36(45): 6695-6702, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30269917

RESUMO

Enterotoxigenic Escherichia coli (ETEC), Campylobacter jejuni (CJ), and Shigella sp. are major causes of bacterial diarrhea worldwide, but there are no licensed vaccines against any of these pathogens. Most current approaches to ETEC vaccines are based on recombinant proteins that are involved in virulence, particularly adhesins. In contrast, approaches to Shigella and CJ vaccines have included conjugate vaccines in which Shigella lipopolysaccharides (LPS) or CJ capsule polysaccharides are chemically conjugated to proteins. We have explored the feasibility of developing a multi-pathogen vaccine by using ETEC proteins as conjugating partners for CJ and Shigella polysaccharides. We synthesized three vaccines in which two CJ polysaccharides were conjugated to two recombinant ETEC adhesins based on CFA/I (CfaEB) and CS6 (CssBA), and LPS from Shigella flexneri was also conjugated to CfaEB. The vaccines were immunogenic in mice as monovalent, bivalent and trivalent formulations. Importantly, functional antibodies capable of inducing hemaglutination inhibition (HAI) of a CFA/I expressing ETEC strain were induced in all vaccines containing CfaEB. These data suggest that conjugate vaccines could be a platform for a multi-pathogen, multi-serotype vaccine against the three major causes of diarrheal disease worldwide.


Assuntos
Campylobacter jejuni/patogenicidade , Escherichia coli Enterotoxigênica/patogenicidade , Shigella/patogenicidade , Vacinas Conjugadas/uso terapêutico , Animais , Campylobacter jejuni/imunologia , Escherichia coli Enterotoxigênica/imunologia , Ensaio de Imunoadsorção Enzimática , Testes de Inibição da Hemaglutinação , Camundongos , Camundongos Endogâmicos BALB C , Shigella/imunologia
15.
J Immunol ; 200(2): 788-799, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29246954

RESUMO

Ligation of Dectin-1 by fungal glucans elicits a Th17 response that is necessary for clearing many fungal pathogens. Laminarin is a (1→3, 1→6)-ß-glucan that is widely reported to be a Dectin-1 antagonist, however, there are reports that laminarin is also a Dectin-1 agonist. To address this controversy, we assessed the physical properties, structure, purity, Dectin-1 binding, and biological activity of five different laminarin preparations from three different commercial sources. The proton nuclear magnetic resonance analysis indicated that all of the preparations contained laminarin although their molecular mass varied considerably (4400-34,400 Da). Two of the laminarins contained substantial quantities of very low m.w. compounds, some of which were not laminarin. These low m.w. moieties could be significantly reduced by extensive dialysis. All of the laminarin preparations were bound by recombinant human Dectin-1 and mouse Dectin-1, but the affinity varied considerably, and binding affinity did not correlate with Dectin-1 agonism, antagonism, or potency. In both human and mouse cells, two laminarins were Dectin-1 antagonists and two were Dectin-1 agonists. The remaining laminarin was a Dectin-1 antagonist, but when the low m.w. moieties were removed, it became an agonist. We were able to identify a laminarin that is a Dectin-1 agonist and a laminarin that is Dectin-1 antagonist, both of which are relatively pure preparations. These laminarins may be useful in elucidating the structure and activity relationships of glucan/Dectin-1 interactions. Our data demonstrate that laminarin can be either a Dectin-1 antagonist or agonist, depending on the physicochemical properties, purity, and structure of the laminarin preparation employed.


Assuntos
Produtos Biológicos/farmacologia , Glucanos/farmacologia , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Animais , Produtos Biológicos/química , Linhagem Celular , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Glucanos/química , Humanos , Fatores Imunológicos/química , Lectinas Tipo C/química , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Polímeros/química , Polímeros/farmacologia , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Carbohydr Res ; 418: 9-12, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26513759

RESUMO

Campylobacter jejuni is a leading cause of traveler's diarrhea. Previously, we have shown that a C. jejuni capsule polysaccharide (CPS) conjugate vaccine can fully prevent C.jejuni diarrhea in non-human primates. C.jejuni CPSs are decorated with non-stoichiometric amounts of O-methyl phosphoramidate (MeOPN) units that are key serospecific markers. In the case of C.jejuni serotype complex HS23/36, the MeOPN are at positions 2 and 6 of the CPS galactose (Gal). We describe here the synthesis of the p-methoxyphenyl glycoside of MeOPN→6-α-D-Galp, and its immunodetection by antisera raised by C.jejuni CPS conjugates with MeOPN at primary positions. The synthetic approach in this work served as the foundation for a similar MeOPN→6-Gal construct used in a conjugate vaccine, whose synthesis, immunogenicity and efficacy will be described elsewhere.


Assuntos
Campylobacter jejuni/imunologia , Galactosídeos/imunologia , Fosforamidas/imunologia , Polissacarídeos Bacterianos/imunologia , Vacinas Conjugadas/imunologia , Campylobacter jejuni/química , Configuração de Carboidratos , Galactosídeos/síntese química , Galactosídeos/química , Fosforamidas/síntese química , Fosforamidas/química , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/química , Vacinas Conjugadas/química
17.
BMC Res Notes ; 8: 204, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26032784

RESUMO

BACKGROUND: Campylobacter jejuni is a leading bacterial cause of food-borne illness in humans. Symptoms range from mild gastroenteritis to dysentery. Contaminated chicken meat is the most common cause of infection. Broiler chickens become colonized with high numbers of C. jejuni in the intestinal tract, but do not become clinically ill. Vaccination of broiler chicks to control colonization by C. jejuni is challenging because immune function is limited in the first 2 weeks post-hatch and immune suppressive maternal antibodies are common. In addition, there is little time for induction of immunity, since broilers reach slaughter weight by 5-6 weeks of age. In the current study the immunogenicity of a C. jejuni capsular polysaccharide-diphtheria toxoid conjugated vaccine (CPSconj), administered subcutaneously with various adjuvants was assessed and the efficacy of vaccination for reducing cecal colonization after experimental challenge was evaluated by determining colony-forming units (CFU) of C. jejuni in cecal contents. RESULTS: The CPSconj vaccine was immunogenic when administered as three doses at 3, 4 and 5 weeks of age to specific pathogen free chicks lacking maternal antibodies (seroconversion rates up to 75%). Commercial broiler chicks (having maternal antibodies) receiving two doses of CPSconj vaccine at 7 and 21 days of age did not seroconvert before oral challenge at 29 days, but 33% seroconverted post challenge; none of the placebo-injected, challenged birds seroconverted. Vaccinated birds had significantly lower numbers of C. jejuni in cecal contents than control birds at necropsy (38 days of age). CFU of C. jejuni did not differ significantly among groups of birds receiving CPSconj vaccine with different adjuvants. In two trials, the mean reduction in CFU associated with vaccination was 0.64 log10 units. CONCLUSIONS: The CPSconj vaccine was immunogenic in chicks lacking maternal antibodies, vaccinated beginning at 3 weeks of age. In commercial broiler birds (possessing maternal antibodies) vaccinated at 7 and 21 days of age, 33% of birds seroconverted by 9 days after challenge, and there was a modest, but significant, reduction in cecal counts of C. jejuni. Further studies are needed to optimize adjuvant, route of delivery and scheduling of administration of this vaccine.


Assuntos
Campylobacter jejuni/crescimento & desenvolvimento , Galinhas/microbiologia , Polissacarídeos Bacterianos/farmacologia , Vacinas Conjugadas/farmacologia , Animais , Anticorpos/sangue , Formação de Anticorpos/efeitos dos fármacos , Infecções por Campylobacter/imunologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/prevenção & controle , Campylobacter jejuni/efeitos dos fármacos , Ceco/microbiologia , Contagem de Colônia Microbiana , Polissacarídeos Bacterianos/imunologia , Vacinação , Vacinas Conjugadas/imunologia
18.
Carbohydr Res ; 378: 15-25, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23597587

RESUMO

Clostridium difficile is the most common cause of antimicrobial-associated diarrhea in humans and may cause death. Previously, we discovered that C. difficile expresses three polysaccharides, named PSI, PSII, and PSIII. It has now been established that PSII is a conserved antigen abundantly present on the cell-surface and biofilm of C. difficile. In contrast, the expression of PSI and PSIII appears to be stochastic processes. In this work, the total chemical synthesis of the PSI pentasaccharide repeating unit carrying a linker at the reducing end, α-l-Rhap-(1→3)-ß-d-Glcp-(1→4)-[α-l-Rhap-(1→3)]-α-d-Glcp-(1→2)-α-d-Glcp-(1→O(CH2)5NH2, was achieved by a linear synthesis strategy from four monosaccharide building blocks. The synthesized PSI pentasaccharide was conjugated to a subunit of C. difficile exotoxin B yielding a potential dual C. difficile vaccine. More significantly, sera from healthy horses were shown to contain natural anti-PSI IgG antibodies that detected both the synthetic non-phosphorylated PSI repeat and the native PSI polysaccharide, with a slightly higher recognition of the native PSI polysaccharide.


Assuntos
Clostridioides difficile/química , Cisteína Endopeptidases/metabolismo , Cavalos/sangue , Imunoglobulina G/sangue , Oligossacarídeos/síntese química , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/metabolismo , Animais , Sequência de Carboidratos , Técnicas de Química Sintética , Glicosilação , Imunoglobulina G/imunologia , Dados de Sequência Molecular , Oligossacarídeos/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia
19.
Expert Rev Vaccines ; 12(4): 421-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23560922

RESUMO

Clostridium difficile is responsible for thousands of deaths each year and a vaccine would be welcomed, especially one that would disrupt bacterial maintenance, colonization and persistence in carriers and convalescent patients. Structural explorations at the University of Guelph (ON, Canada) discovered that C. difficile may express three phosphorylated polysaccharides, named PSI, PSII and PSIII; this review captures our recent efforts to create vaccines based on these glycans, especially PSII, the common antigen that has precipitated immediate attention. The authors describe the design and immunogenicity of vaccines composed of raw polysaccharides and conjugates thereof. So far, it has been observed that anti-PSII antibodies can be raised in farm animals, mice and hamster models; humans and horses carry anti-PSII IgA and IgG antibodies from natural exposure to C. difficile, respectively; phosphate is an indispensable immunogenic epitope and vaccine-induced PSII antibodies recognize PSII on C. difficile outer surface.


Assuntos
Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Clostridioides difficile/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Animais Domésticos , Anticorpos Antibacterianos/sangue , Cricetinae , Modelos Animais de Doenças , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Camundongos , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
20.
Infect Immun ; 81(3): 665-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23250948

RESUMO

Campylobacter jejuni is a major cause of bacterial diarrheal disease worldwide. The organism is characterized by a diversity of polysaccharide structures, including a polysaccharide capsule. Most C. jejuni capsules are known to be decorated nonstoichiometrically with methyl phosphoramidate (MeOPN). The capsule of C. jejuni 81-176 has been shown to be required for serum resistance, but here we show that an encapsulated mutant lacking the MeOPN modification, an mpnC mutant, was equally as sensitive to serum killing as the nonencapsulated mutant. A nonencapsulated mutant, a kpsM mutant, exhibited significantly reduced colonization compared to that of wild-type 81-176 in a mouse intestinal colonization model, and the mpnC mutant showed an intermediate level of colonization. Both mutants were associated with higher levels of interleukin 17 (IL-17) expression from lamina propria CD4(+) cells than from cells from animals infected with 81-176. In addition, reduced levels of Toll-like receptor 4 (TLR4) and TLR2 activation were observed following in vitro stimulation of human reporter cell lines with the kpsM and mpnC mutants compared to those with wild-type 81-176. The data suggest that the capsule polysaccharide of C. jejuni and the MeOPN modification modulate the host immune response.


Assuntos
Infecções por Campylobacter/microbiologia , Campylobacter jejuni/fisiologia , Polissacarídeos Bacterianos/fisiologia , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Camundongos , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...